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New theorem on action integrals and oscillation periods of 
motion in polynomial multi-well potentials 

Karl-Erik Thylwe 
Department of Mechanics, Royal Institute of Technology, S-I00 44 Stockholm, Sweden 

Received I2 June 1990 

Abstract. The present theoretical investigation shows that the oscillation periods and the 
corresponding classical action integrals, associated with motion of a given energy in the 
local wells of a multi-well anharmonic potential, are linearly dependent. The proof makes 
use of the analytic behaviour a f the  local momentum ofthe particle in the complex position 
variable. The iheorem applies to paiynomiai poientiair of aioiirary even degree. 

1. Introduction 

Anharmonic potential models have a wide range of applications in physics and 
chemistry (Nayfeh and Mook 1979, Hayashi 19851, and have been studied in detail 
by many scientists. In  a recent numerical work, Ali and Snider (1989) discovered some 
less familiar properties of classical quartic, sextic and octic oscillators. The main 
purpose of the present paper is to show, quite generally, the conjectures put forward 
(and numerically verified in three cases) by Ali and Snider. Consider a one-dimensional 
motion of a point mass in a polynomial potential of even degree n = 4,6,8, . , . , with 
the potential parameters and the total mechanical energy given such that all classical 
turning points are real valued, i.e. there are n / 2  separated wells in which the classical 
motion is possible. For a system satisfying these conditions the oscillation periods 
(T,,  T2, . . .) pertaining to the local wells are linearly dependent, satisfying the relation 

T, - T2 + T3 -. . . - (-1)"/*Tn/2 = 0. (1) 

For an arbitrary quartic potential ( n  = 4) this result implies that the period in one 
well is equal to that in the other well. Since the potential wells are generally asymmetric 
it is not directly realized why the periods should be equal. Note, however, that the 
local periods 7; are in general energy dependent, in  contrast to the harmonic oscillator 
case n = 2. 

case n = 4, and the authors indicate the existence of an analytic proof of the relation 
(1) also for the cases n = 6  and 8, involving hyperelliptic integrals. 

In the present paper 1 shall outline a proof of equation (1) for the general case, 
using complex analysis. In section 2 I define the anharmonic oscillator model. Section 
3 deals with the proof of equation ( I )  and conclusions are given in section 4. 
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2. The anharmonic oscillator model 

I consider the motion of a particle given by the one-dimensional Hamiltonian 

H = p 2 / 2 +  V ( x )  (2) 

where p is the linear momentum, and V ( x )  is the potential of a given analytic form 

V ( x ) =  1 Dix' n =4, 6, 8,. . . . (3 )  
,i= I 

The potential in equation (3) is slightly more general than that discussed by Ali and 
Snider (1989) in the sense that the linear term is included in the present treatment. 

The mechanical energy E is identical to the Hamiltonian H in the present model. 
For the time being I shall assume that the  potentia! parame!err Dj are such !ha! a!! 
classical turning points are real and that the coefficient pertaining to the highest power 
of the potential, i.e. D,, is positive. In section 4 1 discuss the more general case when 
classical turning points are complex valued. 

With a slightly different notation to that used by Ali and Snider, we write the period 
of oscillation of a particle in the j t h  local well (counting from the left along the real 
x axis) as 

where E is the conserved mechanical energy. In the following section 1 shall make 
use of the well known relation between the period and the action integral: 

7 ; = 2 r d l j / d E  ( 5 )  

where 

3. Derivations 

The proof of equation (1) follows a semiclassical technique used in quantum mechanics 
by Sommerfeld (1969) and it is organized in the following way. Firstly, 1 define a 
generalized action integrai 3 , ,  the giobaiacrion, which is defined aiong a closed contour 
in the complex x plane circumventing all classical turning points. Secondly, I show 
the following linear relation for the local action integrals: 

*/2  

1'1 
( - ! ) J + ' I j = 3 " ,  ( 7 )  

Thirdly, I proceed to construct a recursion scheme for the determination of explicit 
algebraic expressions for the global action ,?,, on the right-hand side of equation (7). 
Finally, from the property of these recursion relations, I conclude that 3,, is an 
energy-independent quantity when n > 2. Clearly equation ( 1 )  then follows from (7) 
and (3) .  
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3.1. Definition of the global action integral 

The analytic definition of the global action is based on the proper analytic behaviour 
of the local momentum &(E - V(x) )” ‘  in the complex coordinate plane. The local 
momentum is made single valued by introducing cuts emerging from the turning points, 
which are brarxh point singularities. For simplicity, I deform the cuts in such a way 
that they cancel everywhere in the complex plane, except on the real axis in the 
classically allowed regions of the potential. 

I then define the global action as the contour integral 

where C is a closed contour circumventing all the turning points in  the negative sense 
(see figure 1). As can be seen in figure 1, the contour C does not cross any cuts. 
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Figure 1. The figure s h o w  (a) the potenlial energy diagram lor thc sextic anharmonic 
oscillator (see Ali and Snider (1989) for details) and ( h )  the pertinen1 complex contours 
defining the action integrals. 

3.2. Derivation of equation (7)  

It is now a simple matter to split the contour C into a set of closed contours C, 
circumventing each cut (local well). Equation (7) then follows from the fact that the 
local momentum is positive on the upper lip of the odd-labelled cuts, and negative on 
the upper lip of the even-labelled cuts. 

3.3. Evaluation of the global action integral 

To show that S,, is energy independent I proceed to evaluate the defining contour 
integral by residue calculus. 
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Let C lie sufficiently far away from the turning points and the origin. To construct 
a MacLaurin expansion of the integrand in (81, I factorize out the leading term in the 
argument of the square root, thus obtaining 

V ( X ) - E  
( E  - V ( X ) ) ' / ~ =  i G ( - l )  (9) 

so that the phase factor of the integrand in (8) becomes i for large negative values of 
x, i.e. for x = -1xI. Note that D, is assumed positive. To complete the expansion I write 

V ( X )  - E n 

= 1 + 1 ajx-' 
D,x " 1'1 

with 

a, = D,- , /D,  

a .=EJD, .  

for m = 1 , 2 , .  . . , n - 1  

I define a new set of expansion coefficients b, through the relation 

which, by repeated expansions of multinomials, leads to the following formula: 

b, = ( a:! 
j = o  

where the coefficients a i '  are determined by the recursion relation 

with 

a 'O l  = m = O  

, a, m a l  

m { A  m>O (15) 

The action integral CF. can now be evaluated by the residue theorem. I find 

5 .  = J20,(-1)"/2b,~2+l (16) 

where n is an even integer. For n = 2 ,  4, 6 and 8,  the relevant coefficients b,, b,, b, 
and b,, respectively, are given by 

(17) 

b, =fa, -i(2a,a2)+&a;' (18) 

(19) b -I 5 4  - 2a4 - ; (2a,a,+ al )+$(3aia2)  -maxal 

b 5 = f a , - i ( 2 a , a , + 2 a 2 a l ) + ~ ( 3 a i a , + 3 a i a , ) - ~ ( 4 a : a z ) + ~ a :  (20) 

b - L  1 2  2 - 2 a 2 - ~ a 1  

where the a, are defined in equation (11). 
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In terms of the original parameters of the Hamiltonian I find 

3, = - [ DJ D, -~(2D,D4+ 2DJl,)/ D: +Q(3D:Ds + 3 D , D ~ ) / D ~  

- &4D:&)/ & + &@I. (24) 

As is clearly seen in the expressions (21)-(24) above, the global action is energy 
dependent only for the harmonic oscillator potential (with n = 2). The general proof 
of the energy independence of the global action integral for n > 2 follows by examining 
equations (111, (13)-(16). In short, the expression for 3. will only contain expansion 
coefficients a,, with m = 1 , 2 , .  . . , n/2+ 1,  whilst the energy appears in a.. 

(3 

4. Discussion 

To prove equation ( 1 )  by explicit evaluation of the local oscillation periods is difficult, 
involving a great deal of working experience with hyperelliptic integrals. However, 
once it has been defined, the global action integral is far more easy to evaluate and 
the proof of (1) follows from (7). The physical significance of the global action integral, 
as defined in the present paper, is appreciated in the field of phase-integral methods 
(Sommerfeld 1969, Berry and Mount 1972) for solving the Schrodinger equation in 
quantum mechanics. 

I have performed a numerical test of the expression for S6 and Ss in equations 

and Snider (1989). From their tables of numerically computed local action integrals 1 
find, using relation (71, the value 95.148 364 86 for 3, and -131.085 7368 for &. A 
direct use of formulae (23) and (24) give the numerical results 95.148 364 8601 and 
-131.085 736 828, respectively. 

Mathematically, the relations (1) and (7)  still hold if the classical turning points 
become complex valued. However, the classical meaning of the present results in such 
a situation is unclear. For example, with an increase of the total energy, a particle 
moving in one of two wells of a quartic potential may suddenly be able to oscillate 
back and forth in a double well with a certain period 7. The local periods T, and Tz 
are now complex valued, still satisfying T, = T2 according to equation ( 1 ) .  but they 
have no obvious meaning in classical mechanics even if one can show that T =  
Re( TI + Tz) is mathematically valid. 

(23) and QA), respe&e!y, for !he p.flic.1.r sex!ic and_ po!en!ia!s given in .4!i 

Acknowledgment 

1 am grateful to A Hokback for plotting the figure and for checking formulae (17)-(20). 



630 K - E  7'hylwe 

References 

Ali M K and Snider W P 1989 .I. Chem. Phyr. 91 300-6 
Berry M V and Mount K E 1972 Rep. P r g .  PhyT. 35 315-97 
Hayashi C 1985 Nonlinear Oreillationi in Physical Systems (Princeton, NJ: Princeton University Pres )  
Nayfeh A H and Mook D T 1979 Nonlineor Oseillorionr (New York: Wiley) 
Sammerfeld A 1969 Arombou und Spektrollinien voI I (Braunschweig: Vieweg und Sahn) 8th edn appendix 4 


